Domains Without Dense Steklov Nodal Sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nodal Sets of Steklov

We study the nodal set of the Steklov eigenfunctions on the boundary of a smooth bounded domain in Rn – the eigenfunctions of the Dirichlet-to-Neumann map Λ. For a bounded Lipschitz domain Ω ⊂ Rn, this map associates to each function u defined on the boundary ∂Ω, the normal derivative of the harmonic function on Ω with boundary data u. Under the assumption that the domain Ω is C2, we prove a do...

متن کامل

Nodal Length of Steklov Eigenfunctions on Real-analytic Riemannian Surfaces

We prove sharp upper and lower bounds for the nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces with boundary. The argument involves frequency function methods for harmonic functions in the interior of the surface as well as the construction of exponentially accurate approximations for the Steklov eigenfunctions near the boundary.

متن کامل

Counting nodal domains

We consider the nodal domains of Gaussian random waves in two dimensions. We present a method to calculate the distribution of the number of nodal domains and the average connectivity with the help of auxiliary Potts-spins. An analytical approach could be helpful to decide whether the pattern of nodal domains belongs to the universality class of short-ranged percolation. This is not completely ...

متن کامل

Nodal Solutions to Critical Growth Elliptic Problems under Steklov Boundary Conditions

We study elliptic problems at critical growth under Steklov boundary conditions in bounded domains. For a second order problem we prove existence of nontrivial nodal solutions. These are obtained by combining a suitable linking argument with fine estimates on the concentration of Sobolev minimizers on the boundary. When the domain is the unit ball, we obtain a multiplicity result by taking adva...

متن کامل

Dense Admissible Sets

Call a set of integers {b1, b2, . . . , bk} admissible if for any prime p, at least one congruence class modulo p does not contain any of the bi. Let ρ ∗(x) be the size of the largest admissible set in [1, x]. The Prime k-tuples Conjecture states that any for any admissible set, there are infinitely many n such that n+b1, n+b2, . . . n+bk are simultaneously prime. In 1974, Hensley and Richards ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2020

ISSN: 1069-5869,1531-5851

DOI: 10.1007/s00041-020-09753-7